初一数学总结
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它是增长才干的一种好办法,快快来写一份总结吧。那么你知道总结如何写吗?下面是小编帮大家整理的初一数学总结,希望对大家有所帮助。
初一数学总结1对于本次考试的成绩,我感到不满意。总体情况来看,只有小部分学生都发挥了正常水平,另一小部分同学通过半个月的强化复习,虽然有了一定程度的进步,但是中间段的学生的成绩有待加强。下面,我对考试中出现的具体情况作如下细致的分析:
一、试卷分析
本次考试的命题范围:人教版七年级上册,第一章到第二章的内容,完全根据新课改的要求。试卷共计28题,满分120分。其中填空题共10小题,每空2分,共20分;选择题共6题,每小题3分,共18分;解答题共12小题,共82分。第一章有关知识点:有理数,绝对值,相反数,科学记数法,有理数的混合运算。第二章有关知识点:代数式及它的化简求值,单项式和多项式,同类项,去括号等内容,教学重点和难点都有考察到,基础题覆盖面还是很广的,基础稍扎实的学生把自己会的题目分数拿到基本及格来讲还是很容易的,整体看试卷的难度适中,难易结合,并且有一定梯度。
二、 学生答题情况及存在问题
1、纵观整份试卷难度不大,有些题型耳熟能详,是平时学习及复习检测中遇见过的题型,学生容易得到基本分,但有些学生的成绩还是不尽人意。凭简单的记忆,忽略细节,粗心大意,不认真审题,造成失误。平时没有养成良好的学习习惯。
2、基础知识不扎实,主要表现在:
(1)填空题最高分为18,最低得分为2.
错误主要集中在题4、题10、题11、题12上,题4准确率较低的原因是学生对于单项式的系数和次数的理解不透, 10题错误主要值的代入不清楚,其实是对于负数的奇数次幂是负数,负数的偶数次幂是偶数的理解不到位;题11学生做不好的主要是对学过知识遗忘,由于这题题目需要用到分情况讨论,有些同学就自动放弃了,另外一个原因是无法解读题意,无从下手,实际上只是一个负数的绝对值是它的相反数,及乘法法则的运用;题 12则需要较全面的综合理解能力和计算能力,在做这个题目的时候,学生的判别思维比较差,只考虑了一种情况。
(2)选择题比较简单,但还是由于种种原因无法令人满意,主要原因首先是知识点掌握不到位,如公式记忆错误,或计算不过关。
(3)解答题的跨度比较大的。23、24均属于基础题,也是平时主要训练的题型,因此这几道题的得分比较正常,但得分结果却很不尽人意,因为得分率还是很低,主要原因首先是符号决定错误;再则是合并同类项的方法没有掌握。后两题属于提高题,题27、28题意较新颖,学生必须理解才能解决好。所以我们要以课本为主,在抓好“三基”教学的同时,以学生发展为本,加强数学思维能力的培养。积极实行探究性学习,激发学生思考,培养学生的创新意识和创新能力。
三、教学反思及改进
1、优化课堂教学过程,加强对概念的教学,加强基础知识的教学,这虽然是老生常谈,却是个不易做好的问题,故要做到备课细致,备教材、备学生,备过程,切实提高课堂效率。
2、学生的数学学习两极分化现象日趋严重.对学习有困难的学生,要给予及时的关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有浓厚兴趣的学生,要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。加强师生交流,做好培优、扶中、补差工作。
3、指导学生认真审题,具体问题具体分析,尽量让学生独立去揭示结论的产生与形成过程,不要急于抛出结论,要给学生一定的思维空间和时间。
4、在解题过程中,要从不同角度、不同层次、多方位来考虑问题。要提高学生的计算准确率,多注意培养学生读题能力及理解能力,注意逻辑思维训练。要培养学生的观察、归纳和概括能力,提高学生的应变能力和综合解决问题的能力。
5、培养学生的发散思维能力、严谨性和最优化解题思路。注重代数式求值要先化简后代入求值的训练,既要弄清解法的来龙去脉,又要注重计算的多方面验算。注意解答题计算推理过程的示范性,使学生确实形成良好的解题规范及书写习惯。提高计算能力,注意数学思想方法在解题过程中的体现与反思。
6、在教学中课堂容量较大,留给学生动脑思考的时间及动手练习的时间较少,学生未能真正掌握目标要求。学生更需课后的总结、思考与练习。
7、让学生参与知识的形成过程,体验研究方法。数学概念、定理、法则等知识的形成过程,往往要经历观察、分析、综合、归纳、类比、猜想和证明过程,在知识的形成过程中,可以激发学习的情趣,学会研究的策略和方法,它比掌握知识结论本身更重要。在考试中,由于死记硬背、生搬硬套,造成当情境稍加变化就束手无策的例子是较多的。要让每个学生通过自己内心的体验和主动参与去学习数学。教师的角色要从知识的传播者转为学生主动学习、主动探索的指导者与促进者;教学活动过程中要突出学生的主体参与,要引导学生多读、多议、多想、多练,只有这样,产生的新知识才能越真、越完善、越易于迁移。
初一数学总结2本学期,我担任七年级数学教学工作。在一学期的实际教学中,我按照《新课程标准》的要求,结合本校的实际条件和学生的实际情景,全面实施素质教育,努力提高自身的业务水平和教学本事,为了克服不足,总结经验,使今后的工作更上一层楼,现对本学期教学工作作出如下总结:
一、认真备课。
备课时,我结合教材的资料和学生的实际精心设计每一堂课的教学过程,不但要研究知识的相互联系,并且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的重点。认真写好教案和教学反思。
二、认真上课。
为了提高教学质量,体现新的育人理念,把"知识与技能,过程与方法,情感态度与价值观"的教学目标真正实施在实际的课堂教学之中。课堂教学以人为本,注重精讲多练,异常注意调动学生的进取性,强化他们探究合作意识。对于每一节课新知的学习,我经过联系现实生活,让学生们在生活中感知数学,学习数学,运用数学;经过小组交流活动,让学生在探究合作中动手操作,掌握方法,体验成功等。鼓励学习大胆质疑,注重每一个层次的学生学习需求和学习本事。从而,把课堂还给了学生,使学生成了学习的主人。
三、认真批改作业。
对于学生作业的布置,我本着“因人而异,适中适量的”原则进行合理安排,既要使作业有基础性,针对性,综合性,又要研究学生的不一样实际,突出层次性,坚决不做毫无意义的作业。学生的每次 ……此处隐藏19498个字……÷……"连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用"·"乘,或省略不写;
(2)数与数相乘,仍应使用"×"乘,不用"·"乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
有理数负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
(3);;
(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
整式的加减
单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"-"号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
一元一次方程
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,填入有关的代数式是获得方程的基础.
1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于"和,差,倍,分问题"
今天有关初一数学上册知识点总结归纳的相关内容就介绍到这里了。