2和5的倍数的特征教学反思
身为一名刚到岗的教师,教学是重要的工作之一,通过教学反思可以有效提升自己的教学能力,如何把教学反思做到重点突出呢?下面是小编收集整理的2和5的倍数的特征教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
2和5的倍数的特征教学反思1《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:
教学片段一:
让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右
老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。
师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。
(结束)学生回答。
生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数
吗?(学生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一样)
师:你分类的标准是什么?
生2:个位是0——9的都归为一类,共两类。
生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。
师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)
师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)
以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。
教学片段二:
师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)
师:谁来介绍自己新的分类方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
师:你的分类标准是什么?
生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。
师:谁来帮他“以此类推”?
生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。
生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。
师:你能用一句话来表达吗?
生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。
生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。
师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。
生4:1加0加5等于6,6是3的倍数,105也是3的倍数。
生5:1加1加1等于3,3是3的倍数,111也是3的倍数。
……
(一个学生根据规律回答,其他学生用竖式验证。)
生6:3的倍数的特征是找到了,但这样的分类太乱。我一共分3类:
第一类:每个数数位上的数字的和是3:3、12、21、30;
第二类:每个数数位上的数字的和是6:6、15、24、42、51;
第三类:每个数数位上的数字的和是9:9、18、27、36、45……,
这样的数是3的倍数。
师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的倍数没有超出这三类的。
师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)
师:谁能用几句话来概括?
生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。
师:真佩服你们!
第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。
学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。
从本节课中,我有几点小小的感悟:
一、教师不要害怕学生探究的失败。学生第一次探究的`失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。
二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3 ……此处隐藏5482个字……偶数,也是最小的偶数。
师:同学们说的非常棒,0是偶数。
4、深入探究
(教师出示下面的两组数。112、25、248、60、72、90.) 师:仔细观察上面的两组数,你发现了什么?
生1:60、90既是2的倍数又是5的倍数
师:什么样的数既是5的倍数,也是2的倍数?
生:个位上是0的数既是2的倍数又是5的倍数。
(三)应用拓展
1、观察、交流、合作。(学生的号码从1——50)
(1)请号码是2的倍数的同学站起来。
(2)请号码是5的倍数的同学站起来。
(3)请号码既是5的倍数又是2的倍数的同学站起来。
(4)请号码是偶数的同学站起来。
(5)请号码是奇数的同学站起来。
师:通过刚才的活动你发现了什么?说出你的号码,与同学们交流。。
生1:我24号,是偶数,也是2的倍数,站起来2次。
生2:我11号,是奇数,站起来1次。
生3:我20号,是偶数,也是2的倍数,同时既是5的倍数又是2的倍数,所以我站起来3次。
师:请站起来3次的同学说出你的号码。
10、20、30、40.
师:同学们观察一下这些数的特点,说说你发现了什么? 生1:它们既是2的倍数,也是5的倍数,个位上都是0。
2和5的倍数的特征教学反思9教学过程中,在学生掌握知识的同时,注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成,但是要渗透数学思想方法或科学的研究方法,就提出了较高要求。在课堂上引导学生现在“百数表”中找规律,再再比100大的数中举例验证。通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果。经过于老师的倾心评课,以下几点问题需要思考实践:
1、对学生已经发现的的问题不需再重复,这样就可以节省出教学时间。
2、偶数的定义需要学生用自己的话解释一下。对奇数的定义理解一定要讲解透彻,为以后分辨质数打下基础。
3、0,2,5排能够被5整除的`数要说说排序方法,以免丢漏数。
4、第一题的问题要求再明确一些,学生答题可能会更快。
2和5的倍数的特征教学反思103的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。
下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的.数,通过交流,学生发现这些数不一定是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。在此基础上,抽象成各位上数的和,是理解3的倍数特征的关键。
“试一试”是数学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数,利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。随后设计了一系列习题,使学生得到巩固提高。
2和5的倍数的特征教学反思11这堂课主要目标是引导孩子经历探索“2的倍数的特征”的过程,培养学生抽象、总结及概括能力,初步体会“不完全推理”的一般方法。在课前独立研究前,我首先布置了这样的两个问题:思考“我们怎样去找2的倍数的特征” 、“我们采取什么方法去找2的倍数的特征?”然后再让学生按书上的要求在百数图中独立的找出100以内2和5的所有倍数。这样孩子很自然的想到“找几个2的倍数来看看”,孩子就能够理解我们为什么要在百数图上找2的倍数,找到这些数之后,也会自发地去思考这些数有什么共同特征,而不会像牵线的木偶任我们摆布。在预习作业中我还布置了另两个问题:自学书本,弄清偶数和奇数的含义;思考能同时是2和5的倍数的数的特征。
但在课堂教学中还是出现了让人啼笑皆非的事,课始,我问学生,你知道这节课我们将会研究什么问题吗?令我意想不到的是在两个班中学生的回答如出一辙——“研究偶数和奇数”,有同学在位置上窃笑,我没有立即否定,接着问,那你知道什么叫偶数和奇数吗?(我的本意是在让学生作出正确回答后再顺势而导,偶数和奇数都是与哪个数有关,哪我们这节课只是研究2的倍数的特征吗?让他自己发现回答的不全面)可没想到的是又来了一个出人意料的回答:2 的倍数是偶数,5的倍数是奇数。既然学生的预习效果如此不理想,我决定临时改变教学策略,跳出“学程导航”的模式,重新用老方法让学生在课上再一次经历探索的过程。但是从课堂的练习看,问题还是比较严重。
于是我就有些困惑,究竟是我的教学安排出现了问题,还是在预习作业的布置中语言的交代上不够清楚呢?我们虽然主张“先学后教”,让学生课前自主探究,提倡整体预习。但我还是认为,小学生的数学思维还处在形象思维向抽象逻辑思维转变的阶段,还是需要在一定的情景中在老师的引领下合作探究,而一味盲目地让孩子独立研究,而老师又不在旁边加以及时的.指导和纠正,而在认知形成的初始阶段,一旦在认识上有偏差产生错误的结论,再想反它纠正过来往往是很困难的,因为第一印象很重要。现在强调课前预习我并不反对,毕竟学习目标的指向性更明确了,长期的培养,学生的学习方法肯定会得到提高,但对数学思想方法的培养上有些弱化,另外,缺少了在具体的情景下学习,总觉得知识的习得过于直接,学生容易遗忘。因此,数学预习应因学习内容而宜,因年级而宜。
2和5的倍数的特征教学反思12这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:
1、观察5的倍数,想想这些数有什么特征?
2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。
通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有()。
2、组成的数是5的倍数的有()。
3、组成的数既是2的.倍数、又是5的倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。